sjy-ecos/public/lib/bokeh/js/tree/models/tickers/log_ticker.js

146 lines
4.6 KiB
JavaScript
Raw Permalink Normal View History

2017-02-20 08:33:07 +00:00
var AdaptiveTicker, LogTicker, _, range,
extend = function(child, parent) { for (var key in parent) { if (hasProp.call(parent, key)) child[key] = parent[key]; } function ctor() { this.constructor = child; } ctor.prototype = parent.prototype; child.prototype = new ctor(); child.__super__ = parent.prototype; return child; },
hasProp = {}.hasOwnProperty;
_ = require("underscore");
AdaptiveTicker = require("./adaptive_ticker");
range = function(start, stop, step) {
var i, result;
if (_.isUndefined(stop)) {
stop = start;
start = 0;
}
if (_.isUndefined(step)) {
step = 1;
}
if ((step > 0 && start >= stop) || (step < 0 && start <= stop)) {
return [];
}
result = [];
i = start;
while ((step > 0 ? i < stop : i > stop)) {
result.push(i);
i += step;
}
return result;
};
LogTicker = (function(superClass) {
extend(LogTicker, superClass);
function LogTicker() {
return LogTicker.__super__.constructor.apply(this, arguments);
}
LogTicker.prototype.type = 'LogTicker';
LogTicker.override({
mantissas: [1, 5]
});
LogTicker.prototype.get_ticks_no_defaults = function(data_low, data_high, desired_n_ticks) {
var base, end_factor, endlog, factor, factors, i, interval, j, k, l, len, len1, len2, len3, len4, len5, log_high, log_interval, log_low, m, minor_interval, minor_offsets, minor_ticks, n, num_minor_ticks, o, ref, start_factor, startlog, tick, ticks, x;
num_minor_ticks = this.get('num_minor_ticks');
minor_ticks = [];
if (data_low <= 0) {
data_low = 1;
}
if (data_low > data_high) {
ref = [data_high, data_low], data_low = ref[0], data_high = ref[1];
}
base = this.get('base');
log_low = Math.log(data_low) / Math.log(base);
log_high = Math.log(data_high) / Math.log(base);
log_interval = log_high - log_low;
if (log_interval < 2) {
interval = this.get_interval(data_low, data_high, desired_n_ticks);
start_factor = Math.floor(data_low / interval);
end_factor = Math.ceil(data_high / interval);
if (_.isNaN(start_factor) || _.isNaN(end_factor)) {
factors = [];
} else {
factors = _.range(start_factor, end_factor + 1);
}
ticks = (function() {
var j, len, results;
results = [];
for (j = 0, len = factors.length; j < len; j++) {
factor = factors[j];
if (factor !== 0) {
results.push(factor * interval);
}
}
return results;
})();
if (num_minor_ticks > 1) {
minor_interval = interval / num_minor_ticks;
minor_offsets = (function() {
var j, ref1, results;
results = [];
for (i = j = 1, ref1 = num_minor_ticks; 1 <= ref1 ? j <= ref1 : j >= ref1; i = 1 <= ref1 ? ++j : --j) {
results.push(i * minor_interval);
}
return results;
})();
for (j = 0, len = minor_offsets.length; j < len; j++) {
x = minor_offsets[j];
minor_ticks.push(ticks[0] - x);
}
for (k = 0, len1 = ticks.length; k < len1; k++) {
tick = ticks[k];
for (l = 0, len2 = minor_offsets.length; l < len2; l++) {
x = minor_offsets[l];
minor_ticks.push(tick + x);
}
}
}
} else {
startlog = Math.ceil(log_low);
endlog = Math.floor(log_high);
interval = Math.ceil((endlog - startlog) / 9.0);
ticks = range(startlog, endlog, interval);
if ((endlog - startlog) % interval === 0) {
ticks = ticks.concat([endlog]);
}
ticks = ticks.map(function(i) {
return Math.pow(base, i);
});
if (num_minor_ticks > 1) {
minor_interval = Math.pow(base, interval) / num_minor_ticks;
minor_offsets = (function() {
var m, ref1, results;
results = [];
for (i = m = 1, ref1 = num_minor_ticks; 1 <= ref1 ? m <= ref1 : m >= ref1; i = 1 <= ref1 ? ++m : --m) {
results.push(i * minor_interval);
}
return results;
})();
for (m = 0, len3 = minor_offsets.length; m < len3; m++) {
x = minor_offsets[m];
minor_ticks.push(ticks[0] / x);
}
for (n = 0, len4 = ticks.length; n < len4; n++) {
tick = ticks[n];
for (o = 0, len5 = minor_offsets.length; o < len5; o++) {
x = minor_offsets[o];
minor_ticks.push(tick * x);
}
}
}
}
return {
"major": ticks,
"minor": minor_ticks
};
};
return LogTicker;
})(AdaptiveTicker.Model);
module.exports = {
Model: LogTicker
};