var AdaptiveTicker, ContinuousTicker, _, argmin, clamp, log, p, extend = function(child, parent) { for (var key in parent) { if (hasProp.call(parent, key)) child[key] = parent[key]; } function ctor() { this.constructor = child; } ctor.prototype = parent.prototype; child.prototype = new ctor(); child.__super__ = parent.prototype; return child; }, hasProp = {}.hasOwnProperty; _ = require("underscore"); argmin = require("./util").argmin; ContinuousTicker = require("./continuous_ticker"); p = require("../../core/properties"); clamp = function(x, min_val, max_val) { return Math.max(min_val, Math.min(max_val, x)); }; log = function(x, base) { if (base == null) { base = Math.E; } return Math.log(x) / Math.log(base); }; AdaptiveTicker = (function(superClass) { extend(AdaptiveTicker, superClass); function AdaptiveTicker() { return AdaptiveTicker.__super__.constructor.apply(this, arguments); } AdaptiveTicker.prototype.type = 'AdaptiveTicker'; AdaptiveTicker.define({ base: [p.Number, 10.0], mantissas: [p.Array, [1, 2, 5]], min_interval: [p.Number, 0.0], max_interval: [p.Number] }); AdaptiveTicker.prototype.initialize = function(attrs, options) { var prefix_mantissa, suffix_mantissa; AdaptiveTicker.__super__.initialize.call(this, attrs, options); prefix_mantissa = _.last(this.get('mantissas')) / this.get('base'); suffix_mantissa = _.first(this.get('mantissas')) * this.get('base'); this.extended_mantissas = _.flatten([prefix_mantissa, this.get('mantissas'), suffix_mantissa]); return this.base_factor = this.get_min_interval() === 0.0 ? 1.0 : this.get_min_interval(); }; AdaptiveTicker.prototype.get_interval = function(data_low, data_high, desired_n_ticks) { var best_mantissa, candidate_mantissas, data_range, errors, ideal_interval, ideal_magnitude, ideal_mantissa, interval, interval_exponent; data_range = data_high - data_low; ideal_interval = this.get_ideal_interval(data_low, data_high, desired_n_ticks); interval_exponent = Math.floor(log(ideal_interval / this.base_factor, this.get('base'))); ideal_magnitude = Math.pow(this.get('base'), interval_exponent) * this.base_factor; ideal_mantissa = ideal_interval / ideal_magnitude; candidate_mantissas = this.extended_mantissas; errors = candidate_mantissas.map(function(mantissa) { return Math.abs(desired_n_ticks - (data_range / (mantissa * ideal_magnitude))); }); best_mantissa = candidate_mantissas[argmin(errors)]; interval = best_mantissa * ideal_magnitude; return clamp(interval, this.get_min_interval(), this.get_max_interval()); }; return AdaptiveTicker; })(ContinuousTicker.Model); module.exports = { Model: AdaptiveTicker };