drought/disaster/util/utils.py

359 lines
12 KiB
Python

from geopandas import *
from pandas import *
from shapely.geometry import Point
import rasterio as rio
import rasterio.mask
from rasterio.warp import reproject, Resampling
import os
import glob
from ..util.call import *
DATA_BASE_PATH = '/home/g214/data_from_chenhao/data_analyse/'
TEMP_PATH = '/home/g214/temp/'
BJ_REGION = '/home/g214/data_from_chenhao/data_analyse/boundary/bj_region/bj_region.shp'
GEOSERVER_SPI_PATH = '/var/lib/tomcat8/webapps/geoserver/data/spi'
# DATA_BASE_PATH = r"D:\7. business\7.baoji\code\drought_analyse\data/"
def get_buffer_data(gdf, crs={'init': 'epsg:4326', 'no_defs': True}, dis=1):
data = gdf
if not data.crs:
data.crs = crs
else:
crs = data.crs
data = data.to_crs(epsg=3857)
buffer = data.buffer(dis)
data.set_geometry(buffer, inplace=True)
data.to_crs(crs=crs, inplace=True)
return data
def read_xzqh(path):
shp_bjqh = GeoDataFrame.from_file(path, encoding='utf-8')
shp_bjqh = shp_bjqh[['geometry', 'county']]
shp_bjqh.to_crs(epsg=4326, inplace=True)
return shp_bjqh
def intersection(gdf1, gdf2):
geo_list = []
county = []
index_gdf1 = 0
name = []
for geo in gdf1.geometry:
index_gdf2 = 0
for geo2 in gdf2.geometry:
if geo.intersects(geo2):
intersection_geo = geo.intersection(geo2)
geo_list.append(intersection_geo)
if 'county' in gdf1:
county.append(gdf1.iloc[index_gdf1].county)
elif 'county' in gdf2:
county.append(gdf2.iloc[index_gdf2].county)
if 'name' in gdf1:
name.append(gdf1.iloc[index_gdf1].name)
elif 'name' in gdf2:
name.append(gdf2.iloc[index_gdf2].name)
index_gdf2 += 1
index_gdf1 += 1
gdf = GeoDataFrame(geometry=geo_list, crs=gdf1.crs)
if county and len(county) > 0:
gdf['county'] = county
if name and len(name) > 0:
gdf['name'] = name
# print(gdf.head())
return gdf
# def intersection(gdf1, gdf2):
# try:
# from geopandas.tools import overlay
# data = overlay(gdf1, gdf2, how='intersection', use_sindex=False)
# data.crs = gdf1.crs
# return data
# except Exception as e:
# print(str(e))
# return None
def intersection_xzqh(gdf):
bjqh = read_xzqh(DATA_BASE_PATH + 'boundary/bj.shp')
intersection_data = intersection(gdf, bjqh)
return intersection_data
def join(gdf1, gdf2):
return geopandas.sjoin(gdf1, gdf2, how="inner", op='intersects')
def cut_raster_by_geo(path, new_path, geo):
src = rio.open(path)
# gdf = geo.to_crs(epsg=src.crs)
feature = [geo.__geo_interface__]
out_image, out_transform = rio.mask.mask(src, feature, crop=True, nodata=src.nodata)
out_meta = src.meta.copy()
src.close()
out_meta.update({"driver": "GTiff",
"height": out_image.shape[1],
"width": out_image.shape[2],
"transform": out_transform})
dest = rio.open(new_path, "w", **out_meta)
dest.write(out_image)
dest.close()
def get_new_raster_name(path):
return os.path.join(os.path.dirname(path), "region", os.path.basename(path))
def get_region_geo():
shp_data = GeoDataFrame.from_file(BJ_REGION)
region = shp_data.loc[0].geometry
return region
def cut_files_by_shp(files, shp_path):
region = get_region_geo()
for file in files:
cut_raster_by_geo(file, get_new_raster_name(file), region)
def cut_dir_by_shp(dir, shp_path):
files = filter(os.path.isfile, glob.glob(dir + "*"))
cut_files_by_shp(files, shp_path)
def agg_raster_by_raster(path1, path2=os.path.join(TEMP_PATH, 'temp.tif'), type='area'):
raster1 = rio.open(path1)
raster2 = rio.open(path2)
bjqh = read_xzqh(DATA_BASE_PATH + 'boundary/bj.shp')#.to_crs(epsg=3857)
res_county = {}
for i in range(0, len(bjqh)):
geo = bjqh.iloc[i].geometry
county_name = bjqh.iloc[i].county
feature = [geo.__geo_interface__]
try:
raster1_image, raster1_transform = rio.mask.mask(raster1, feature, crop=True, nodata=raster1.nodata)
raster2_image, raster2_transform = rio.mask.mask(raster2, feature, crop=True, nodata=raster2.nodata)
raster2_reproject = np.empty(shape=(raster1_image.shape[0], # same number of bands
round(raster1_image.shape[1]),
round(raster1_image.shape[2])))
reproject(
raster2_image, raster2_reproject,
src_transform=raster2_transform,
dst_transform=raster1_transform,
src_crs='+proj=latlong',
dst_crs='+proj=latlong',
resampling=Resampling.bilinear)
for i in range(0, raster1_image.shape[1]):
for j in range(0, raster1_image.shape[2]):
data1 = raster1_image[0, i, j]
data2 = raster2_reproject[0, i, j]
if data2 != raster2.nodata and data2 < 0:
# print(data1, data2)
if type == 'area':
if data1 != raster1.nodata and data1 > 0:
if county_name in res_county:
res_county[county_name] = res_county[county_name] + 1
else:
res_county[county_name] = 1
else:
if data1 != raster1.nodata and data1 > 0:
if county_name in res_county:
res_county[county_name] = res_county[county_name] + float(data1)
else:
res_county[county_name] = float(data1)
except Exception as e:
print(str(e))
raster1.close()
raster2.close()
return res_county
def agg_raster_by_gdf_value(path, gdf):
# crs = '+proj=aea +lat_1=25 +lat_2=47 +lat_0=0 +lon_0=105 +x_0=0 +y_0=0 +datum=WGS84 +units=m +no_defs'
with rio.open(path) as src:
gdf = gdf.to_crs(epsg=3857)
sum = {}
for i in range(0, len(gdf)):
geo = gdf.iloc[i].geometry
try:
feature = [GeoSeries(geo).__geo_interface__['features'][0]['geometry']]
out_image, out_transform = rio.mask.mask(src, feature, crop=True, nodata=src.nodata)
res = np.nansum(np.where(out_image == src.nodata, np.nan, out_image))
if 'county' in gdf:
county = gdf.iloc[i].county
# print(county)
if county in sum.keys():
sum[county] = sum.get(county) + res
else:
sum[county] = res
elif 'all' in sum.keys():
sum['all'] = sum.get('all') + res
else:
sum['all'] = res
# for band in out_image:
# for row in band:
# for column in row:
# if column != src.nodata:
# sum += column
# print(sum)
except Exception as e:
print(str(e))
return sum
def agg_raster_by_gdf_area(path, gdf):
# crs = '+proj=aea +lat_1=25 +lat_2=47 +lat_0=0 +lon_0=105 +x_0=0 +y_0=0 +datum=WGS84 +units=m +no_defs'
with rio.open(path) as src:
gdf = gdf.to_crs(epsg=3857)
sum = {}
for i in range(0, len(gdf)):
geo = gdf.iloc[i].geometry
try:
feature = [GeoSeries(geo).__geo_interface__['features'][0]['geometry']]
out_image, out_transform = rio.mask.mask(src, feature, crop=True, nodata=src.nodata)
out_image = np.where(out_image == 1, 1, np.nan)
# print(out_image)
res = np.nansum(out_image) * src.width * src.height
if 'county' in gdf:
county = gdf.iloc[i].county
if county in sum.keys():
sum[county] = sum.get(county) + res
else:
sum[county] = res
elif 'all' in sum.keys():
sum['all'] = sum.get('all') + res
else:
sum['all'] = res
except:
pass
return sum
def agg_prevent_disater_by_gdf_area(path, gdf):
# crs = '+proj=aea +lat_1=25 +lat_2=47 +lat_0=0 +lon_0=105 +x_0=0 +y_0=0 +datum=WGS84 +units=m +no_defs'
with rio.open(path) as src:
gdf = gdf.to_crs(epsg=3857)
sum = {}
for i in range(0, len(gdf)):
geo = gdf.iloc[i].geometry
try:
feature = [GeoSeries(geo).__geo_interface__['features'][0]['geometry']]
out_image, out_transform = rio.mask.mask(src, feature, crop=True, nodata=src.nodata)
out_image = np.where(out_image == 1, 1, np.nan)
# print(out_image)
res = np.nansum(out_image) * src.width * src.height
name = str(gdf.iloc[i].name)
if name in sum.keys():
sum[name] = sum.get(name) + res
else:
sum[name] = res
except:
pass
return sum
def agg_gdf_by_gdf_area(gdf1, gdf2):
intersection_data = intersection(gdf1, gdf2)
area = intersection_data.to_crs(epsg=3857).area
intersection_data['area'] = area
intersection_data = intersection_data[['name', 'area']]
# print(intersection_data.head())
return intersection_data.groupby('name')['area'].sum()
def agg_raster_by_gdf_area_and_aspect_slope(path, path_aspect, path_slope, gdf):
with rio.open(path) as src:
with rio.open(path_aspect) as src1:
with rio.open(path_slope) as src2:
gdf = gdf.to_crs(epsg=3857)
res_flat = 0
res_30 = 0
res_more_than_30 = 0
for i in range(0, len(gdf)):
geo = gdf.iloc[i].geometry
try:
feature = [geo.__geo_interface__]
out_image, out_transform = rio.mask.mask(src, feature, crop=True, nodata=src.nodata)
out_image_aspect, out_transform_aspect = rio.mask.mask(src1, feature, crop=True,
nodata=src1.nodata)
out_image_slope, _ = rio.mask.mask(src2, feature, crop=True, nodata=src2.nodata)
out_image_aspect_reproject = np.empty(shape=(out_image.shape[0], # same number of bands
round(out_image.shape[1]),
round(out_image.shape[2])))
out_image_slope_reproject = np.empty(shape=(out_image.shape[0], # same number of bands
round(out_image.shape[1]),
round(out_image.shape[2])))
reproject(
out_image_aspect, out_image_aspect_reproject,
src_transform=out_transform_aspect,
dst_transform=out_transform,
src_crs='+proj=latlong',
dst_crs='+proj=latlong',
resampling=Resampling.bilinear)
reproject(
out_image_slope, out_image_slope_reproject,
src_transform=out_transform_aspect,
dst_transform=out_transform,
src_crs='+proj=latlong',
dst_crs='+proj=latlong',
resampling=Resampling.bilinear)
out_image_slope_reproject = np.where(out_image_slope_reproject == src1.nodata, 1000,
out_image_slope_reproject)
out_image_slope_reproject = out_image_slope_reproject.astype(int)
out_image_aspect_reproject = np.where(out_image_aspect_reproject == src2.nodata, 1000,
out_image_aspect_reproject)
out_image_aspect_reproject = out_image_aspect_reproject.astype(int)
for i in range(0, out_image.shape[1]):
for j in range(0, out_image.shape[2]):
aspect = out_image_aspect_reproject[0, i, j]
slope = out_image_slope_reproject[0, i, j]
print(aspect, slope, out_image[0, i, j])
if out_image[0, i, j] > 0:
if slope <= 0:
print('slope')
if aspect < 0:
res_flat += 1
elif slope < 30:
res_30 += 1
else:
res_more_than_30 += 1
print(res_flat, res_30, res_more_than_30)
except Exception as e:
print(str(e))
return (res_flat, res_30, res_more_than_30)
def merge_gdf_geo_to_geojson(gdf):
return gdf.to_json()
def reproject_by_gdal(src_path, dst_path, src_srs = 'epsg:4326', dst_srs='EPSG:3857'):
import gdal
print('begin warp')
# ds = gdal.Warp(dst_path, src_path, dstSRS=dst_src)
# ds = gdal.Open(src_path)
# ds = gdal.Transformer(dst_path, ds, projWin = [-75.3, 5.5, -73.5, 3.7])
# ds = None
call_exe(['gdalwarp', '-s_srs', src_srs, '-t_srs', dst_srs, src_path, dst_path])
print('warp')
# ds = None
# print(ds)
if __name__ == '__main__':
# cut_dir_by_shp('/home/g214/data_from_chenhao/data_analyse/station/interpolation/rain/', '/home/g214/data_from_chenhao/data_analyse/boundary/bj_region/bj_region.shp')
cut_dir_by_shp('/home/g214/data_from_chenhao/data_analyse/station/interpolation/temp/',
'/home/g214/data_from_chenhao/data_analyse/boundary/bj_region/bj_region.shp')
# cut_dir_by_shp('../data/', '../bj_region/bj_region.shp')